NUMBER SYSTEMS

Numbers are intellectual witnesses that belong only to mankind.

- 1. If the H C F of 657 and 963 is expressible in the form of $657x + 963x 15$ find x. $(Ans: x=22)$
- **Ans:** Using Euclid's Division Lemma

$$
a= bq+r, o \le r < b
$$

\n
$$
963=657\times1+306
$$

\n
$$
657=306\times2+45
$$

\n
$$
306=45\times6+36
$$

\n
$$
45=36\times1+9
$$

\n
$$
36=9\times4+0
$$

\n
$$
\therefore HCF (657, 963) = 9
$$

\nnow
$$
9 = 657x + 963\times(-15)
$$

\n
$$
657x=9+963\times15
$$

\n
$$
=9+14445
$$

\n
$$
657x=14454
$$

\n
$$
x=14454/657
$$

\n
$$
x = 22
$$

2. Express the GCD of 48 and 18 as a linear combination. (Ans: Not unique)

A=bq+r, where
$$
0 \le r < b
$$

\n48=18x2+12
\n18=12x1+6
\n12=6x2+0
\n \therefore HCF (18,48) = 6
\nnow 6=18-12x1
\n6=18-(48-18x2)
\n6=18-48x1+18x2
\n6=18x3-48x1
\n6=18x3+48x(-1)
\ni.e. 6=18x +48y
\n \therefore x=3, y=-1

 $i.e.$

 $\mathcal{L}_{\mathcal{C}}$

$$
6= 18\times3 +48\times(-1)
$$

=18\times3 +48\times(-1) + 18\times48-18\times48
=18(3+48)+48(-1-18)
=18\times51+48\times(-19)
6=18x+48y
x = 51, y = -19

 \mathcal{L}_{\bullet}

Hence, x and y are not unique.

3. Prove that one of every three consecutive integers is divisible by 3.

Ans:

n,n+1,n+2 be three consecutive positive integers We know that n is of the form $3q$, $3q +1$, $3q + 2$ So we have the following cases

Case – I when $n = 3q$

In the this case, n is divisible by 3 but $n + 1$ and $n + 2$ are not divisible by 3

Case - II When $n = 3q + 1$ Sub $n = 2 = 3q + 1 + 2 = 3(q + 1)$ is divisible by 3. but n and n+1 are not divisible by 3

 divisible by 3 Sub $n = 2 = 3q + 1 + 2 = 3(q + 1)$ is divisible by 3. but n and n+1 are not Case – III When $n = 3q + 2$

Hence one of n, $n + 1$ and $n + 2$ is divisible by 3

(Ans: 17) remainder 7, 11, 15 respectively. 4. Find the largest possible positive integer that will divide 398, 436, and 542 leaving

Ans: The required number is the HCF of the numbers

Find the HCF of 391, 425 and 527 by Euclid's algorithm

 \therefore HCF (425, 391) = 17

Now we have to find the HCF of 17 and 527 $527 = 17 \times 31 + 0$

 \therefore HCF (17,527) = 17 : HCF (391, 425 and 527) = 17

5. Find the least number that is divisible by all numbers between 1 and 10 (both inclusive).

(Ans:2520)

Ans: The required number is the LCM of 1,2,3,4,5,6,7,8,9,10

 \therefore LCM = 2 \times 2 \times 3 \times 2 \times 3 \times 5 \times 7 = 2520

6. Show that 571 is a prime number.

Ans: Let $x=571 \Rightarrow x=\sqrt{571}$

 571 is a prime number Since 571 is not divisible by any of the above numbers Prime numbers less than 24 are 2,3,5,7,11,13,17,19,23 Now 571 lies between the perfect squares of $(23)^2$ and $(24)^2$

7. If d is the HCF of 30, 72, find the value of x & y satisfying $d = 30x + 72y$. (Ans:5, -2 (Not unique)

Ans: Using Euclid's algorithm, the HCF (30, 72)

 12 = 6 2 + 0 30 = 12 2 + 6 72 = 30 2 + 12 6=30 5+72 -2 6=30-2 72+30 4 6=30-(72-30 2)2 6=30-12 2 HCF (30,72) = 6 x = 5, y = -2

Also $6 = 30 \times 5 + 72 (-2) + 30 \times 72 - 30 \times 72$

Solve it, to get

$$
x=77, y=-32
$$

Hence, x and y are not unique

8. Show that the product of 3 consecutive positive integers is divisible by 6.

Ans: Proceed as in question sum no. 3

9. Show that for odd positive integer to be a perfect square, it should be of the form $8k + 1$.

Let $a=2m+1$

Ans: Squaring both sides we get

$$
a^2 = 4m (m + 1) + 1
$$

 \therefore product of two consecutive numbers is always even

 $m(m+1)=2k$ $a^2=4(2k)+1$ $a^2 = 8k + 1$ Hence proved

10. Find the greatest number of 6 digits exactly divisible by 24, 15 and 36. (Ans:999720)

Ans: LCM of 24, 15, 36

LCM = $3 \times 2 \times 2 \times 2 \times 3 \times 5 = 360$

 Now, the greatest six digit number is 999999 Divide 999999 by 360 \therefore Q = 2777, R = 279

: the required number = $999999 - 279 = 999720$

11. If a and b are positive integers. Show that $\sqrt{2}$ always lies between *a b* and $\frac{a-2b}{a}$ *b* $a \qquad a-2$

 $^{2} - 2b^{2}$ $(a + b)$ $a^2 - 2b$ $b(a + b)$ or $\frac{a}{a} < \frac{a+2b}{b}$ *b a b* **Ans:** We do not know whether

 \therefore to compare these two number,

Let us comute
$$
\frac{a}{b} - \frac{a+2b}{a+b}
$$

\n \Rightarrow on simplifying, we get $\frac{a^2 - 2b^2}{b(a+b)}$

$$
\therefore \frac{a}{b} - \frac{a+2b}{a+b} > 0 \text{ or } \frac{a}{b} - \frac{a+2b}{a+b} < 0
$$

now
$$
\frac{a}{b} - \frac{a+2b}{a+b} > 0
$$

$$
\frac{a^2 - 2b^2}{b(a+b)} > 0 \text{ solve it, we get, } a > \sqrt{2b}
$$

Thus , when $a > \sqrt{2}b$ and $a \, a + 2b$ *b a b* ,

We have to prove that $a + b$ $\frac{a + 2b}{2}$ < $\sqrt{2}$ < b a

Now a $>\sqrt{2} b \implies 2a^2 + 2b^2 > 2b^2 + a^2 + 2b^2$ On simplifying we get

$$
\sqrt{2} > \frac{a + 2b}{a + b}
$$

Also $a > \sqrt{2}$

$$
\Rightarrow \frac{a}{b} > \sqrt{2}
$$

Similarly we get $\sqrt{2}$, $< \frac{a + 2b}{a + b}$
Hence $\frac{a}{b} < \sqrt{2} < \frac{a + 2b}{a + b}$

12. Prove that $(\sqrt{n-1} + \sqrt{n+1})$ is irrational, for every $n \in \mathbb{N}$

Self Practice